A novel L1/2 regularization shooting method for Cox's proportional hazards model
نویسندگان
چکیده
Nowadays, a series of methods are based on a L1 penalty to solve the variable selection problem for a Cox’s proportional hazards model. In 2010, Xu et al. have proposed a L1/2 regularization and proved that the L1/2 penalty is sparser than the L1 penalty in linear regression models. In this paper, we propose a novel shooting method for the L1/2 regularization and apply it on the Cox model for variable selection. The experimental results based on comprehensive simulation studies, real Primary Biliary Cirrhosis and diffuse large B cell lymphoma datasets show that the L1/2 regularization shooting method performs competitively.
منابع مشابه
Adaptive L1/2 Shooting Regularization Method for Survival Analysis Using Gene Expression Data
A new adaptive L₁/₂ shooting regularization method for variable selection based on the Cox's proportional hazards mode being proposed. This adaptive L₁/₂ shooting algorithm can be easily obtained by the optimization of a reweighed iterative series of L₁ penalties and a shooting strategy of L₁/₂ penalty. Simulation results based on high dimensional artificial data show that the adaptive L₁/₂ sho...
متن کاملNovel Harmonic Regularization Approach for Variable Selection in Cox's Proportional Hazards Model
Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data...
متن کاملRegularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
We introduce a pathwise algorithm for the Cox proportional hazards model, regularized by convex combinations of ℓ1 and ℓ2 penalties (elastic net). Our algorithm fits via cyclical coordinate descent, and employs warm starts to find a solution along a regularization path. We demonstrate the efficacy of our algorithm on real and simulated data sets, and find considerable speedup between our algori...
متن کاملA cocktail algorithm for solving the elastic net penalized Cox's regression in high dimensions
We introduce a cocktail algorithm, a good mixture of coordinate decent, the majorization-minimization principle and the strong rule, for computing the solution paths of the elastic net penalized Cox’s proportional hazards model. The cocktail algorithm enjoys a proven convergence property. We have implemented the cocktail algorithm in an R package fastcox. Numerical examples show that cocktail i...
متن کاملSheppard's correction for grouping in Cox's proportional hazards model
Cox's proportional hazards model is often t to grouped survival data, i.e. occurrence/exposure data over given time intervals and covariate strata. We derive a Sheppard correction for the bias in the grouped data analogue of Cox's maximum partial likelihood estimator. This is done via a large sample theory in which the covariate strata and time intervals shrink as the sample size increases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft Comput.
دوره 18 شماره
صفحات -
تاریخ انتشار 2014